抗震性能:能够显著提高建筑的抗震能力,延长结构的自振周期,减小地震响应。
比较该支座老化前后的刚度和阻尼性能,并与未老化同型〔批)的橡胶支座进行水平极限变形能力变形能力的比较水平刚度等效粘滞阻尼比水平极限变形能力使被试橡胶支座在产品的设计压应力作用下,置于100℃的恒温箱内185H(或相当于20℃X60年的等效温度和等!效时间)后,取出测其徐变量.板式橡胶支座的疲劳性能竖向刚度先测被试橡胶支座的竖向刚度、水平刚度、等效黏滞阻尼比;被试橡胶支座在产品的设计压应力作用下,按剪应变R=50%;频率F=0.2HZ施加水平荷载150次,并仔细观察试验过程中试件应无龟裂或出现其他异常现象。
摩擦摆隔震支座FPSII-8000-400-4.11厂家
随着建筑和桥梁工程对安全性和耐久性要求的不断提高,行业标准也在持续升级。以最新的 JT/T 391 - 2024 行业标准为例,在耐候性方面提出了更高的要求,明确规定橡胶支座的使用寿命需≥50 年 。这一规定促使企业在材料选择、生产工艺等方面进行全面优化,采用更优质的橡胶材料和先进的制造工艺,以确保支座在长期使用过程中能够保持稳定的性能 。
橡胶支座作为建筑结构中的重要连接元件,通过预加应力原理实现力的传递与调节。其核心功能在于将上部结构的荷载(包括恒载与活载)安全传递至建筑墩台,同时保证结构在支座处实现自由变形(转动或移动),确保实际受力状态与设计计算模型相符。与传统的钢支座相比,橡胶支座具有结构简化、钢材用量少、建筑高度降低、安装更换便捷、使用寿命延长等显著优势,尤其适用于宽桥、曲线桥及斜桥等需适应多向变形的复杂结构。
摩擦摆隔震支座FPSII-3000-400-4.11
滑移隔震设计中,给水主管、排水主管、采暖主管通过滑移层时,需按水平方向 360° 范围横向位移不小于水平隔震缝宽度计算,采用多个橡胶减震柔性接头法兰连接,确保管线在地震位移中不破损。
普通橡胶支座:由橡胶层和钢板交替叠合而成,通过橡胶的弹性变形来吸收地震能量。
摩擦隔震支座生产厂家
表盆式橡胶盆式橡胶支座用原材料及部件进厂后的检验检验项目检验内容检验依据检验频次橡胶物理机械性能条每批原料(不大于00KG)一次几何尺寸设计纸每件聚四氟乙烯物理机械性能条每批原料(不大于00KG)一次几何尺寸设计纸每件铸钢件裂纹及缺陷TB/T每件机械性能GB每炉钢板机械性能GB/T每批钢料不锈钢板机械性能GB80每批钢板硅脂物理机械性能HG/T0每批(不大于0KG)黄铜物理机械性能GB/T00每批黄铜客运专线建筑盆式橡胶盆式橡胶支座出厂检验项目及检验周期应符合表规定,出厂检验由工厂质检部门进行,并出具质检报告。
天然橡胶支座(LNR)结构相对简单,由纯橡胶层构成,具有较低的水平刚度和较高的竖向刚度。在阻尼性能方面,其阻尼比通常在 5% - 8% 之间,这使得它在一定程度上能够消耗地震能量。由于其造价相对较低,适用于 7 度以下设防区的一般性建筑,这些建筑对地震防护的要求相对较低,天然橡胶支座能够在满足基本抗震需求的同时,有效控制建设成本 。
摩擦摆隔震支座FPS-Ⅱ-8000-200
定位放线:根据设计图纸,从盖梁中心线向两侧放样垫石中心点,精确计算盖梁中心线与垫石中心的距离,确保支座安装位置准确。
隔震系统设计周期与竖向隔震设计要求:隔震系统周期需符合设计规范,例如某隔震建筑针对 1080KN?M 屈服后刚度及 14200KN 重力荷载,理论周期应为 27S,但 1999 年 AASHTO 规范为限制隔震系统过大位移,将该周期上限设定为 6S,工程设计需严格遵循规范要求。

性能特点:此类支座具备承载能力大、水平位移性能优良的特点,适用于大跨度桥梁结构。
支座局部抗压:梁体混凝土强度(如 C50)远大于橡胶支座容许抗压强度(≤30MPa),因此垫石或梁底面无需额外埋设钢板,仅需确保混凝土表面平整(平整度≤3mm/m),避免局部承压超限。
